Optimizing nitrogen economy under drought: increased leaf nitrogen is an acclimation to water stress in willow (Salix spp.)

نویسندگان

  • Martin Weih
  • Lorenzo Bonosi
  • Luisa Ghelardini
  • Ann Christin Rönnberg-Wästljung
چکیده

BACKGROUND AND AIMS The major objective was to identify plant traits functionally important for optimization of shoot growth and nitrogen (N) economy under drought. Although increased leaf N content (area basis) has been observed in dry environments and theory predicts increased leaf N to be an acclimation to drought, experimental evidence for the prediction is rare. METHODS A pedigree of 200 full-sibling hybrid willows was pot-grown in a glasshouse in three replicate blocks and exposed to two water regimes for 3 weeks. Drought conditions were simulated as repeated periods of water shortage. The total leaf mass and area, leaf area efficiency (shoot growth per unit leaf area, E(A)), area-based leaf N content (N(A)), total leaf N pool (N(L)) and leaf N efficiency (shoot growth per unit leaf N, E(N)) were assessed. KEY RESULTS In the water-stress treatment, shoot biomass growth was N limited in the genotypes with low N(L), but increasingly limited by other factors in the genotypes with greatest N(L). The N(A) was increased by drought, and drought-induced shift in N(A) varied between genotypes (significant G × E). Judged from the E(A)-N(A) relationship, optimal N(A) was 16 % higher in the water-stress compared with the well-watered treatment. Biomass allocation to leaves and shoots varied between treatments, but the treatment response of the leaf : shoot ratio was similar across all genotypes. CONCLUSIONS It is concluded that N-uptake efficiency and leaf N efficiency are important traits to improve growth under drought. Increased leaf N content (area basis) is an acclimation to optimize N economy under drought. The leaf N content is an interesting trait for breeding of willow bioenergy crops in a climate change future. In contrast, leaf biomass allocation is a less interesting breeding target to improve yield under drought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of nitrogen on yield and some physiological characteristics of sorghum (Sorghum sp.) genotypes under drought stress

In order to investigate the effect of drought stress and nitrogen application on growth and some physiological characteristics of sorghum genotypes, an experiment was conducted in a split-split plot with randomized complete block design in three replications at Research farm of collage of agriculture, Isfahan University of Technology. Experimental treatments consisted of two irrigation regimes ...

متن کامل

Maize (Zea mays L.) Response to Nitrogen Fertilizer under Drought Stress at Vegetative and Reproductive Stages

In the sub-tropics, water and nitrogen are the most important factors limiting the grain yield of maize. The effect of nitrogen (N) rates and drought stress at different growth stages of maize were investigated. Nitrogen treatments consisted of 100, 150, and 200  kgN.ha-1 from the urea source while water stress treatments were composed of irrigation-off since the early 10-leaf stage to emergenc...

متن کامل

Willow species (genus: Salix) with contrasting habitat affinities differ in their photoprotective responses to water stress

AlthoughmanyMediterranean and xeric plant species enhance their xanthophyll-mediated thermal dissipation under drought conditions, there has been limited research on photoprotective mechanism in droughted plants from other habitats. To investigate whether wetland plants utilise this mechanism under drought conditions, and whether species differ in their responses depending on their habitat affi...

متن کامل

Acclimation of leaf cohorts expanded under light and water stresses: an adaptive mechanism of Eucryphia cordifolia to face changes in climatic conditions?

Eucryphia cordifolia Cav. is a long-lived evergreen tree species, commonly found as a canopy emergent tree in the Chilean temperate rain forest. This species displays successive leaf cohorts throughout the entire growing season. Thus, full leaf expansion occurs under different environmental conditions during growing such as air temperature, vapor pressure deficit and the progress of moderate wa...

متن کامل

Elevated CO₂ does not offset greater water stress predicted under climate change for native and exotic riparian plants.

In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO₂ might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO₂ and water availability o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2011